3.3.79 \(\int \frac {\cos ^2(x) \sin ^2(x)}{a \cos (x)+b \sin (x)} \, dx\) [279]

3.3.79.1 Optimal result
3.3.79.2 Mathematica [A] (verified)
3.3.79.3 Rubi [A] (verified)
3.3.79.4 Maple [A] (verified)
3.3.79.5 Fricas [B] (verification not implemented)
3.3.79.6 Sympy [F(-1)]
3.3.79.7 Maxima [B] (verification not implemented)
3.3.79.8 Giac [A] (verification not implemented)
3.3.79.9 Mupad [B] (verification not implemented)

3.3.79.1 Optimal result

Integrand size = 20, antiderivative size = 112 \[ \int \frac {\cos ^2(x) \sin ^2(x)}{a \cos (x)+b \sin (x)} \, dx=-\frac {a^2 b^2 \text {arctanh}\left (\frac {b \cos (x)-a \sin (x)}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{5/2}}+\frac {a^2 b \cos (x)}{\left (a^2+b^2\right )^2}-\frac {b \cos ^3(x)}{3 \left (a^2+b^2\right )}-\frac {a b^2 \sin (x)}{\left (a^2+b^2\right )^2}+\frac {a \sin ^3(x)}{3 \left (a^2+b^2\right )} \]

output
-a^2*b^2*arctanh((b*cos(x)-a*sin(x))/(a^2+b^2)^(1/2))/(a^2+b^2)^(5/2)+a^2* 
b*cos(x)/(a^2+b^2)^2-1/3*b*cos(x)^3/(a^2+b^2)-a*b^2*sin(x)/(a^2+b^2)^2+1/3 
*a*sin(x)^3/(a^2+b^2)
 
3.3.79.2 Mathematica [A] (verified)

Time = 0.88 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.03 \[ \int \frac {\cos ^2(x) \sin ^2(x)}{a \cos (x)+b \sin (x)} \, dx=\frac {2 a^2 b^2 \text {arctanh}\left (\frac {-b+a \tan \left (\frac {x}{2}\right )}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{5/2}}-\frac {\left (-9 a^2 b+3 b^3\right ) \cos (x)+b \left (a^2+b^2\right ) \cos (3 x)+2 a \left (-a^2+5 b^2+\left (a^2+b^2\right ) \cos (2 x)\right ) \sin (x)}{12 \left (a^2+b^2\right )^2} \]

input
Integrate[(Cos[x]^2*Sin[x]^2)/(a*Cos[x] + b*Sin[x]),x]
 
output
(2*a^2*b^2*ArcTanh[(-b + a*Tan[x/2])/Sqrt[a^2 + b^2]])/(a^2 + b^2)^(5/2) - 
 ((-9*a^2*b + 3*b^3)*Cos[x] + b*(a^2 + b^2)*Cos[3*x] + 2*a*(-a^2 + 5*b^2 + 
 (a^2 + b^2)*Cos[2*x])*Sin[x])/(12*(a^2 + b^2)^2)
 
3.3.79.3 Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.03, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.650, Rules used = {3042, 3588, 3042, 3044, 15, 3045, 15, 3588, 3042, 3117, 3118, 3553, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^2(x) \cos ^2(x)}{a \cos (x)+b \sin (x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (x)^2 \cos (x)^2}{a \cos (x)+b \sin (x)}dx\)

\(\Big \downarrow \) 3588

\(\displaystyle \frac {b \int \cos ^2(x) \sin (x)dx}{a^2+b^2}+\frac {a \int \cos (x) \sin ^2(x)dx}{a^2+b^2}-\frac {a b \int \frac {\cos (x) \sin (x)}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b \int \cos (x)^2 \sin (x)dx}{a^2+b^2}+\frac {a \int \cos (x) \sin (x)^2dx}{a^2+b^2}-\frac {a b \int \frac {\cos (x) \sin (x)}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}\)

\(\Big \downarrow \) 3044

\(\displaystyle \frac {a \int \sin ^2(x)d\sin (x)}{a^2+b^2}+\frac {b \int \cos (x)^2 \sin (x)dx}{a^2+b^2}-\frac {a b \int \frac {\cos (x) \sin (x)}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {b \int \cos (x)^2 \sin (x)dx}{a^2+b^2}-\frac {a b \int \frac {\cos (x) \sin (x)}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}+\frac {a \sin ^3(x)}{3 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3045

\(\displaystyle -\frac {b \int \cos ^2(x)d\cos (x)}{a^2+b^2}-\frac {a b \int \frac {\cos (x) \sin (x)}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}+\frac {a \sin ^3(x)}{3 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 15

\(\displaystyle -\frac {a b \int \frac {\cos (x) \sin (x)}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}+\frac {a \sin ^3(x)}{3 \left (a^2+b^2\right )}-\frac {b \cos ^3(x)}{3 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3588

\(\displaystyle -\frac {a b \left (\frac {a \int \sin (x)dx}{a^2+b^2}+\frac {b \int \cos (x)dx}{a^2+b^2}-\frac {a b \int \frac {1}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}\right )}{a^2+b^2}+\frac {a \sin ^3(x)}{3 \left (a^2+b^2\right )}-\frac {b \cos ^3(x)}{3 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a b \left (\frac {a \int \sin (x)dx}{a^2+b^2}+\frac {b \int \sin \left (x+\frac {\pi }{2}\right )dx}{a^2+b^2}-\frac {a b \int \frac {1}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}\right )}{a^2+b^2}+\frac {a \sin ^3(x)}{3 \left (a^2+b^2\right )}-\frac {b \cos ^3(x)}{3 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3117

\(\displaystyle -\frac {a b \left (\frac {a \int \sin (x)dx}{a^2+b^2}-\frac {a b \int \frac {1}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}+\frac {b \sin (x)}{a^2+b^2}\right )}{a^2+b^2}+\frac {a \sin ^3(x)}{3 \left (a^2+b^2\right )}-\frac {b \cos ^3(x)}{3 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3118

\(\displaystyle -\frac {a b \left (-\frac {a b \int \frac {1}{a \cos (x)+b \sin (x)}dx}{a^2+b^2}+\frac {b \sin (x)}{a^2+b^2}-\frac {a \cos (x)}{a^2+b^2}\right )}{a^2+b^2}+\frac {a \sin ^3(x)}{3 \left (a^2+b^2\right )}-\frac {b \cos ^3(x)}{3 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 3553

\(\displaystyle -\frac {a b \left (\frac {a b \int \frac {1}{a^2+b^2-(b \cos (x)-a \sin (x))^2}d(b \cos (x)-a \sin (x))}{a^2+b^2}+\frac {b \sin (x)}{a^2+b^2}-\frac {a \cos (x)}{a^2+b^2}\right )}{a^2+b^2}+\frac {a \sin ^3(x)}{3 \left (a^2+b^2\right )}-\frac {b \cos ^3(x)}{3 \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {a b \left (\frac {a b \text {arctanh}\left (\frac {b \cos (x)-a \sin (x)}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{3/2}}+\frac {b \sin (x)}{a^2+b^2}-\frac {a \cos (x)}{a^2+b^2}\right )}{a^2+b^2}+\frac {a \sin ^3(x)}{3 \left (a^2+b^2\right )}-\frac {b \cos ^3(x)}{3 \left (a^2+b^2\right )}\)

input
Int[(Cos[x]^2*Sin[x]^2)/(a*Cos[x] + b*Sin[x]),x]
 
output
-1/3*(b*Cos[x]^3)/(a^2 + b^2) + (a*Sin[x]^3)/(3*(a^2 + b^2)) - (a*b*((a*b* 
ArcTanh[(b*Cos[x] - a*Sin[x])/Sqrt[a^2 + b^2]])/(a^2 + b^2)^(3/2) - (a*Cos 
[x])/(a^2 + b^2) + (b*Sin[x])/(a^2 + b^2)))/(a^2 + b^2)
 

3.3.79.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3044
Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_ 
Symbol] :> Simp[1/(a*f)   Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a 
*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&  !(I 
ntegerQ[(m - 1)/2] && LtQ[0, m, n])
 

rule 3045
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_ 
Symbol] :> Simp[-(a*f)^(-1)   Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], 
x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] && 
 !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])
 

rule 3117
Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; 
 FreeQ[{c, d}, x]
 

rule 3118
Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ 
[{c, d}, x]
 

rule 3553
Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x 
_Symbol] :> Simp[-d^(-1)   Subst[Int[1/(a^2 + b^2 - x^2), x], x, b*Cos[c + 
d*x] - a*Sin[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0]
 

rule 3588
Int[(cos[(c_.) + (d_.)*(x_)]^(m_.)*sin[(c_.) + (d_.)*(x_)]^(n_.))/(cos[(c_. 
) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[b 
/(a^2 + b^2)   Int[Cos[c + d*x]^m*Sin[c + d*x]^(n - 1), x], x] + (Simp[a/(a 
^2 + b^2)   Int[Cos[c + d*x]^(m - 1)*Sin[c + d*x]^n, x], x] - Simp[a*(b/(a^ 
2 + b^2))   Int[Cos[c + d*x]^(m - 1)*(Sin[c + d*x]^(n - 1)/(a*Cos[c + d*x] 
+ b*Sin[c + d*x])), x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] 
&& IGtQ[m, 0] && IGtQ[n, 0]
 
3.3.79.4 Maple [A] (verified)

Time = 0.59 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.47

method result size
default \(-\frac {2 \left (a \,b^{2} \tan \left (\frac {x}{2}\right )^{5}+b^{3} \tan \left (\frac {x}{2}\right )^{4}+\left (-\frac {4}{3} a^{3}+\frac {2}{3} a \,b^{2}\right ) \tan \left (\frac {x}{2}\right )^{3}-2 \tan \left (\frac {x}{2}\right )^{2} a^{2} b +\tan \left (\frac {x}{2}\right ) a \,b^{2}-\frac {2 a^{2} b}{3}+\frac {b^{3}}{3}\right )}{\left (a^{4}+2 a^{2} b^{2}+b^{4}\right ) \left (1+\tan \left (\frac {x}{2}\right )^{2}\right )^{3}}+\frac {8 a^{2} b^{2} \operatorname {arctanh}\left (\frac {2 a \tan \left (\frac {x}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{\left (4 a^{4}+8 a^{2} b^{2}+4 b^{4}\right ) \sqrt {a^{2}+b^{2}}}\) \(165\)
risch \(\frac {{\mathrm e}^{i x} b}{-16 i b a +8 a^{2}-8 b^{2}}-\frac {i {\mathrm e}^{i x} a}{8 \left (-2 i b a +a^{2}-b^{2}\right )}+\frac {{\mathrm e}^{-i x} b}{8 \left (i b +a \right )^{2}}+\frac {i {\mathrm e}^{-i x} a}{8 \left (i b +a \right )^{2}}-\frac {b^{2} a^{2} \ln \left ({\mathrm e}^{i x}-\frac {i a^{5}+2 i a^{3} b^{2}+i a \,b^{4}-a^{4} b -2 a^{2} b^{3}-b^{5}}{\left (a^{2}+b^{2}\right )^{\frac {5}{2}}}\right )}{\left (a^{2}+b^{2}\right )^{\frac {5}{2}}}+\frac {b^{2} a^{2} \ln \left ({\mathrm e}^{i x}+\frac {i a^{5}+2 i a^{3} b^{2}+i a \,b^{4}-a^{4} b -2 a^{2} b^{3}-b^{5}}{\left (a^{2}+b^{2}\right )^{\frac {5}{2}}}\right )}{\left (a^{2}+b^{2}\right )^{\frac {5}{2}}}+\frac {b \cos \left (3 x \right )}{-12 a^{2}-12 b^{2}}+\frac {a \sin \left (3 x \right )}{-12 a^{2}-12 b^{2}}\) \(276\)

input
int(cos(x)^2*sin(x)^2/(a*cos(x)+b*sin(x)),x,method=_RETURNVERBOSE)
 
output
-2/(a^4+2*a^2*b^2+b^4)*(a*b^2*tan(1/2*x)^5+b^3*tan(1/2*x)^4+(-4/3*a^3+2/3* 
a*b^2)*tan(1/2*x)^3-2*tan(1/2*x)^2*a^2*b+tan(1/2*x)*a*b^2-2/3*a^2*b+1/3*b^ 
3)/(1+tan(1/2*x)^2)^3+8*a^2*b^2/(4*a^4+8*a^2*b^2+4*b^4)/(a^2+b^2)^(1/2)*ar 
ctanh(1/2*(2*a*tan(1/2*x)-2*b)/(a^2+b^2)^(1/2))
 
3.3.79.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 215 vs. \(2 (104) = 208\).

Time = 0.26 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.92 \[ \int \frac {\cos ^2(x) \sin ^2(x)}{a \cos (x)+b \sin (x)} \, dx=\frac {3 \, \sqrt {a^{2} + b^{2}} a^{2} b^{2} \log \left (-\frac {2 \, a b \cos \left (x\right ) \sin \left (x\right ) + {\left (a^{2} - b^{2}\right )} \cos \left (x\right )^{2} - 2 \, a^{2} - b^{2} + 2 \, \sqrt {a^{2} + b^{2}} {\left (b \cos \left (x\right ) - a \sin \left (x\right )\right )}}{2 \, a b \cos \left (x\right ) \sin \left (x\right ) + {\left (a^{2} - b^{2}\right )} \cos \left (x\right )^{2} + b^{2}}\right ) - 2 \, {\left (a^{4} b + 2 \, a^{2} b^{3} + b^{5}\right )} \cos \left (x\right )^{3} + 6 \, {\left (a^{4} b + a^{2} b^{3}\right )} \cos \left (x\right ) + 2 \, {\left (a^{5} - a^{3} b^{2} - 2 \, a b^{4} - {\left (a^{5} + 2 \, a^{3} b^{2} + a b^{4}\right )} \cos \left (x\right )^{2}\right )} \sin \left (x\right )}{6 \, {\left (a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}\right )}} \]

input
integrate(cos(x)^2*sin(x)^2/(a*cos(x)+b*sin(x)),x, algorithm="fricas")
 
output
1/6*(3*sqrt(a^2 + b^2)*a^2*b^2*log(-(2*a*b*cos(x)*sin(x) + (a^2 - b^2)*cos 
(x)^2 - 2*a^2 - b^2 + 2*sqrt(a^2 + b^2)*(b*cos(x) - a*sin(x)))/(2*a*b*cos( 
x)*sin(x) + (a^2 - b^2)*cos(x)^2 + b^2)) - 2*(a^4*b + 2*a^2*b^3 + b^5)*cos 
(x)^3 + 6*(a^4*b + a^2*b^3)*cos(x) + 2*(a^5 - a^3*b^2 - 2*a*b^4 - (a^5 + 2 
*a^3*b^2 + a*b^4)*cos(x)^2)*sin(x))/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)
 
3.3.79.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(x) \sin ^2(x)}{a \cos (x)+b \sin (x)} \, dx=\text {Timed out} \]

input
integrate(cos(x)**2*sin(x)**2/(a*cos(x)+b*sin(x)),x)
 
output
Timed out
 
3.3.79.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 281 vs. \(2 (104) = 208\).

Time = 0.30 (sec) , antiderivative size = 281, normalized size of antiderivative = 2.51 \[ \int \frac {\cos ^2(x) \sin ^2(x)}{a \cos (x)+b \sin (x)} \, dx=-\frac {a^{2} b^{2} \log \left (\frac {b - \frac {a \sin \left (x\right )}{\cos \left (x\right ) + 1} + \sqrt {a^{2} + b^{2}}}{b - \frac {a \sin \left (x\right )}{\cos \left (x\right ) + 1} - \sqrt {a^{2} + b^{2}}}\right )}{{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} + b^{2}}} + \frac {2 \, {\left (2 \, a^{2} b - b^{3} - \frac {3 \, a b^{2} \sin \left (x\right )}{\cos \left (x\right ) + 1} + \frac {6 \, a^{2} b \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} - \frac {3 \, b^{3} \sin \left (x\right )^{4}}{{\left (\cos \left (x\right ) + 1\right )}^{4}} - \frac {3 \, a b^{2} \sin \left (x\right )^{5}}{{\left (\cos \left (x\right ) + 1\right )}^{5}} + \frac {2 \, {\left (2 \, a^{3} - a b^{2}\right )} \sin \left (x\right )^{3}}{{\left (\cos \left (x\right ) + 1\right )}^{3}}\right )}}{3 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4} + \frac {3 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sin \left (x\right )^{2}}{{\left (\cos \left (x\right ) + 1\right )}^{2}} + \frac {3 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sin \left (x\right )^{4}}{{\left (\cos \left (x\right ) + 1\right )}^{4}} + \frac {{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sin \left (x\right )^{6}}{{\left (\cos \left (x\right ) + 1\right )}^{6}}\right )}} \]

input
integrate(cos(x)^2*sin(x)^2/(a*cos(x)+b*sin(x)),x, algorithm="maxima")
 
output
-a^2*b^2*log((b - a*sin(x)/(cos(x) + 1) + sqrt(a^2 + b^2))/(b - a*sin(x)/( 
cos(x) + 1) - sqrt(a^2 + b^2)))/((a^4 + 2*a^2*b^2 + b^4)*sqrt(a^2 + b^2)) 
+ 2/3*(2*a^2*b - b^3 - 3*a*b^2*sin(x)/(cos(x) + 1) + 6*a^2*b*sin(x)^2/(cos 
(x) + 1)^2 - 3*b^3*sin(x)^4/(cos(x) + 1)^4 - 3*a*b^2*sin(x)^5/(cos(x) + 1) 
^5 + 2*(2*a^3 - a*b^2)*sin(x)^3/(cos(x) + 1)^3)/(a^4 + 2*a^2*b^2 + b^4 + 3 
*(a^4 + 2*a^2*b^2 + b^4)*sin(x)^2/(cos(x) + 1)^2 + 3*(a^4 + 2*a^2*b^2 + b^ 
4)*sin(x)^4/(cos(x) + 1)^4 + (a^4 + 2*a^2*b^2 + b^4)*sin(x)^6/(cos(x) + 1) 
^6)
 
3.3.79.8 Giac [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.71 \[ \int \frac {\cos ^2(x) \sin ^2(x)}{a \cos (x)+b \sin (x)} \, dx=-\frac {a^{2} b^{2} \log \left (\frac {{\left | 2 \, a \tan \left (\frac {1}{2} \, x\right ) - 2 \, b - 2 \, \sqrt {a^{2} + b^{2}} \right |}}{{\left | 2 \, a \tan \left (\frac {1}{2} \, x\right ) - 2 \, b + 2 \, \sqrt {a^{2} + b^{2}} \right |}}\right )}{{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} + b^{2}}} - \frac {2 \, {\left (3 \, a b^{2} \tan \left (\frac {1}{2} \, x\right )^{5} + 3 \, b^{3} \tan \left (\frac {1}{2} \, x\right )^{4} - 4 \, a^{3} \tan \left (\frac {1}{2} \, x\right )^{3} + 2 \, a b^{2} \tan \left (\frac {1}{2} \, x\right )^{3} - 6 \, a^{2} b \tan \left (\frac {1}{2} \, x\right )^{2} + 3 \, a b^{2} \tan \left (\frac {1}{2} \, x\right ) - 2 \, a^{2} b + b^{3}\right )}}{3 \, {\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} {\left (\tan \left (\frac {1}{2} \, x\right )^{2} + 1\right )}^{3}} \]

input
integrate(cos(x)^2*sin(x)^2/(a*cos(x)+b*sin(x)),x, algorithm="giac")
 
output
-a^2*b^2*log(abs(2*a*tan(1/2*x) - 2*b - 2*sqrt(a^2 + b^2))/abs(2*a*tan(1/2 
*x) - 2*b + 2*sqrt(a^2 + b^2)))/((a^4 + 2*a^2*b^2 + b^4)*sqrt(a^2 + b^2)) 
- 2/3*(3*a*b^2*tan(1/2*x)^5 + 3*b^3*tan(1/2*x)^4 - 4*a^3*tan(1/2*x)^3 + 2* 
a*b^2*tan(1/2*x)^3 - 6*a^2*b*tan(1/2*x)^2 + 3*a*b^2*tan(1/2*x) - 2*a^2*b + 
 b^3)/((a^4 + 2*a^2*b^2 + b^4)*(tan(1/2*x)^2 + 1)^3)
 
3.3.79.9 Mupad [B] (verification not implemented)

Time = 23.26 (sec) , antiderivative size = 277, normalized size of antiderivative = 2.47 \[ \int \frac {\cos ^2(x) \sin ^2(x)}{a \cos (x)+b \sin (x)} \, dx=-\frac {\frac {4\,{\mathrm {tan}\left (\frac {x}{2}\right )}^3\,\left (a\,b^2-2\,a^3\right )}{3\,\left (a^4+2\,a^2\,b^2+b^4\right )}-\frac {2\,b\,\left (2\,a^2-b^2\right )}{3\,{\left (a^2+b^2\right )}^2}+\frac {2\,b^3\,{\mathrm {tan}\left (\frac {x}{2}\right )}^4}{a^4+2\,a^2\,b^2+b^4}-\frac {4\,a^2\,b\,{\mathrm {tan}\left (\frac {x}{2}\right )}^2}{a^4+2\,a^2\,b^2+b^4}+\frac {2\,a\,b^2\,{\mathrm {tan}\left (\frac {x}{2}\right )}^5}{a^4+2\,a^2\,b^2+b^4}+\frac {2\,a\,b^2\,\mathrm {tan}\left (\frac {x}{2}\right )}{a^4+2\,a^2\,b^2+b^4}}{{\mathrm {tan}\left (\frac {x}{2}\right )}^6+3\,{\mathrm {tan}\left (\frac {x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {x}{2}\right )}^2+1}-\frac {2\,a^2\,b^2\,\mathrm {atanh}\left (\frac {2\,a^4\,b+2\,b^5+4\,a^2\,b^3-2\,a\,\mathrm {tan}\left (\frac {x}{2}\right )\,\left (a^4+2\,a^2\,b^2+b^4\right )}{2\,{\left (a^2+b^2\right )}^{5/2}}\right )}{{\left (a^2+b^2\right )}^{5/2}} \]

input
int((cos(x)^2*sin(x)^2)/(a*cos(x) + b*sin(x)),x)
 
output
- ((4*tan(x/2)^3*(a*b^2 - 2*a^3))/(3*(a^4 + b^4 + 2*a^2*b^2)) - (2*b*(2*a^ 
2 - b^2))/(3*(a^2 + b^2)^2) + (2*b^3*tan(x/2)^4)/(a^4 + b^4 + 2*a^2*b^2) - 
 (4*a^2*b*tan(x/2)^2)/(a^4 + b^4 + 2*a^2*b^2) + (2*a*b^2*tan(x/2)^5)/(a^4 
+ b^4 + 2*a^2*b^2) + (2*a*b^2*tan(x/2))/(a^4 + b^4 + 2*a^2*b^2))/(3*tan(x/ 
2)^2 + 3*tan(x/2)^4 + tan(x/2)^6 + 1) - (2*a^2*b^2*atanh((2*a^4*b + 2*b^5 
+ 4*a^2*b^3 - 2*a*tan(x/2)*(a^4 + b^4 + 2*a^2*b^2))/(2*(a^2 + b^2)^(5/2))) 
)/(a^2 + b^2)^(5/2)